ISSN:0975-9646

Debashree Patnaik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3), 2011, 1187-1190

GENERATION OF TEST CASES USING UML
SEQUENCE DIAGRAM IN A SYSTEM WITH
COMMUNICATION DEADLOCK

DebashreePatnaik*, Arup Abhinna Acharya?, Durga Prasad Mohapatra®
125chool of Computer Engineering,KIIT University,Bhubaneswar, India
3Department of Computer Science Engineering National Institute of Technology,Rourkela, India

Abstract— An environment in which different processors
communicate with each other speeding up computation and
improving the data availability is called as distributed
environment. Communication and concurrency are the major
issues of the distributed environment. Different processors try to
communicate with each other avoiding deadlock. The resource
contention which is introduced by the concurrent process in
distributed computational environment gives rise to deadlock
problem. In this paper an effort has been made by the authors to
represent deadlock situations with the help of graph. An
algorithm is devised to reveal deadlock has occurred. A real time
banking system is depicted setting out to be an example. Test
cases for the communication deadlock and the UML Sequence
Diagram are laid out from the real time example.

Keywords— Distributed System, deadlock, Sequence Diagram

1.INTRODUCTION

A Distributed system is a collection of processors that do not
share the memory or clock. Each processor has its own local
memory and the processors communicate with each other
through communications lines such as local area or wide area
network. The processors in distributed system vary in size and
function. The distributed system includes giving users access
to the resources maintained by the system and there by
speeding up computation and improving data availability and
reliability. If the system is distributed it provides the
mechanism s for process communication for dealing with the
deadlock problem.

The distributed environment consists of n number of
processes, each of which resides at different processor. The
processes are numbered uniquely from 1 to n and one to one
mapping exists between the processes and the processors.
Synchronization in the distributed environment takes place,
when a process p; wants to enter its critical section, it
generates a timestamp(t;) and sends a message request (p;,t;) to
all processes in the system. On receiving a request message a
process may reply immediately (sends an acknowledgement to
pi) or it may defer sending a message. A process that has
received a reply message from all other process in the system
can enter its critical section, queuing incoming requests and
deferring than existing its critical section, the process sends a
reply message to its entire deferred request. In the distributed
environment processes are concurrent. For concurrent
processes synchronization and dead lock are two common
issues.

The resource contention which is introduced by the concurrent
process in distributed computational environment gives rise to

deadlock problem. A deadlock is a persistent and circular wait
condition where each process involved in the deadlock waits
indefinitely for resources held by other processes while
holding resources needed by others. Thus none of the
otherprocess waiting for needed resources can continue
computation without obtaining the waited for resources.
Deadlock has adverse performances effects that offset the
advantages of resource sharing and processing concurrency.
This paper proposes a method to investigate deadlock through
link list and generate the test cases in the distributed
environment for conformance of deadlock. A sequence
diagram is drawn from the real life deadlock example, where
communication deadlock has occurred. From the sequence
diagram the wait — for — graph for the system is generated, and
from this intermediate form the test cases are generated.

The rest of the paper is organized as follows: Section Il
describes the basic concepts, Section Il focuses on the
proposed approach, SectionlV highlights the test case
generation , Section Vrepresents conclusion and future work.

I11.BASIC CONCEPTS:

System consists of finite number of resources to be distributed
among various computing process. Resources are usually
partitioned into different types consisting number of identical
instances. Memory space,CPU cycles, files messages are all
resource types. If a process requests an instance of resource
type, the allocation of any instance of the type will satisfy the
request. If it will not then the instances are not identical and
the resource type classes have not been defined properly. A
process must request a resource before using it and must
release the resource after using it. A process can request as
many resources as it requires tocarry out the designated task.
A process cannot request for three printers if there are two
printers. A resource is utilized in following sequence:

a) Request: Process request the resource. If request is not
granted immediately then the requesting process must wait
until it can acquire the resource.

b) Use: The process can operate on the resource.

c) Release: The process can release the resource

The resources can be physical resource or logical resource.
The necessary conditions for deadlock are

i).Mutual Exclusion: In non sharable mode at least one
resource must be held, i.e only one process at a time can use
the resource.

ii).Hold and Wait: A process must be holding at least one
resource and waiting to acquire another resource.

1187

Debashree Patnaik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3), 2011, 1187-1190

iii).No Preemption: Resources cannot be preempted,that is a
resource can be released only voluntarily by the process
holding it.

iv).Circular Wait: A set of po,p1,p2 oeeevevne pn of the waiting
process must exit such that pg is waiting for a resource held by
P2sP3e e eenaenenen pn-1 is waiting for a resource held by po.

I11.PROPOSED APPROACH

Single instance of resource type means, the system consisting
of only one resource for one type. Deadlock is detected with
the help of wait for graph. A wait for graph is a graph derived
from the resource allocation graph. It consists of process as
vertices.

An edge from p; to p; in a wait for graph implies that a
process p; is waiting for process p; to release a resource that p;
needs. An edge p; to p; exits in a wait for graph if and only if
the corresponding resource allocation graph contains two
edges p; to ry and rq to p; for some resource Ry. A system is in
deadlock state if and only if the wait for graph contains
cycle(assuming single instance of resource).

FIGURE.1.RESOURCE ALLOCATION GRAPH

In figurel. There are two cycles one is p; to p, to ps, secondis
P2 to ps to pa.

%‘3)

FIGURE2.WAIT FOR GRAPH

In the proposed method, deadlock is detected through the use
of link list. The reference address of resource r; is 210,
reference address of r,,rs is 212, 214 respectively. The various
information of a process running at different sites can be
stored inform of link list. In figure3 the process p;,p;,px are
distributed and executing concurrently. P; holds a resource r;
but is waiting to acquire the resource r, which is hold up by
the process p,. P, is in waiting state for resource r; which is
already acquired by ps. P3 is waiting for resource r; which is
there with the process p;. Here all the processes are in hold
and wait condition giving up a circular loop causing deadlock.
The process information at each site is depicted in each node
and deadlock is viewed through the link list even.

O

FIGURE J.DEADLOCK REPRESENTATION

FIGURE 3. DEADLOCK REPRESENTATION

I passive I

| 212

I 210/214 l pa“irel

I 210 I . I
passive

REQUIRED R_id

act/pasy

CURRENT R_id
- (timestamp)

process number

FIGURE.4.LINKED LIST REPRESENTATION.

CURRENTR_id: Represents the current id of the resource
that it is already holding

Process number: Represents the process id and the site in
which the process is being executed.

REQUIRED R_id: Represents the required id of the resource
that it wants to acquire.

Active/Passive: Represents whether the communication is in
active form or passive form.

Timestamp: Represents for the amount of time the processes
has been in waiting state to acquire the resource.

ALGORITHM FOR CONFORMANCE OF DEADLOCK
DEADLOCK_LL:

Input: Information about each process and resource at all site
Output: Detection of deadlock

STEP1: Consider three arrays of pi[4],p[4],p«[4] of structure
type.pi,pj,piare the three processes executing at different sites
and p;[4],p;[4].pk[4] are the process information stored over
the list.

STEP2: For each process, all the index of respective arrays
have to be filled. For example for process pi[4].
For(i=0;i<=3;i++)

{

X=curr_id;

Y=process_id;

Z=req_id;

If(pi== active)

Acive=1

Else

Passive=0

Timestamp(value);

1188

Debashree Patnaik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3), 2011, 1187-1190

STEP3: Similarly for process pj and pk the process index
information are
X1,Y1,,Z; for Py and X,,Y,,Z, for py.

STEP4: if (Z==X1) && (Z1==X2)

{

If(X==22)

Conformance of DEADLOCK
else

SAFESTATE

}

A CASE STUDY: BANKING APPLICATION:
An example of the banking system is depicted below. Here
different applications are considered as different processes as
P1,P2,P3,P4,ps With their resources as ry,r,rs,r4,Is.

FIGURE.5.CASE STUDY

TABLE.1. PROCESSES AND RESOURCES

Processes Resources

P1 — Deposits application | R1 — Account details table

P2 — Customer application | R2 — Customer details table

R3 - Credit/Debit card
details table

P3 - Credit/Debit Card
Application

P4 — Loan application R4 — Loan details table

P5 — ATM application R5 — ATM Information table

In a Bank we have thousands of different
processes/applications executing using the thousands of
available resources. We take the example of 5 such processes
and resources. The description of the processes and resources:
P1- Deposits application: This deals with the all types of
account details. Its resource R1 will maintain information such
as: Account type, balance, account holder name, other
attached accounts, to name a few.

P2- Customer application: This deals with details of the entire
bank’s customers. Its resource R2 will maintain information
such as: Customer name and personal details, addresses,
different types of accounts, loans or cards he is holding, other
mandatory information of the customers.

P3- Credit/debit card application: This deals with details of
all the Credit and debit cards issued by the bank. Its resource
R3 will have information such as: Card holder’s name, card
type, different reward options available with the cards,
available balance, interest details and payment due date, to
name a few.

P4- Loan Application: This deals with the details of all the
loans that have been sanctioned by the bank. Its resource R4
will be having information such as: Type of loans, Loans
recipients name and other mandatory details, loan amount,
instalment details, due amount and interest details.

P5- ATM application: This deals with the details of the all the
ATM’s installed by the bank in a particular region. Its
resource R5 will be having information such as: ATM codes,
each ATM transaction details and history.

On a given day there will be many processes or transactions
with the aid of different applications and resources available
in the Banks IT Operating System. To name a few of the
transactions, applications for opening of new accounts,
application for new loans and credit/debit cards, Deposit of
salary in customers salary account, deduction of loan
instalments or credit card dues, thousands of ATM transaction
from different ATM machines, etc.

As there are many processes and resources distributed at
different sites in the network, the processes need to
communicate with each other for computational work. The
communication can be depicted in terms of sequence diagram.
The sequence diagram is the best way to represent
communication between different processes. Figure .6
represents sequence diagram.

Let us assume a customer Mr.X, who has 2 accounts in our
bank, account#1 & account #2. Today Mr.X has come to bank
with 2 applications one for closing the account#2 and 2" one
for transferring the available balance in that account to be
transferred to account account#1, which is a joint account with

his wife.
BT qf‘,1 L 0 S 8 13 N B 2 1 141

dhidfrs 53

Tl
| et e
I\ el ol
It 1 it

aniuin F

i
L Izt

el A

g

: oty T ——

‘ —

R R -
g TEQUES ‘. VR
, lal

loda

Mkt
EEE
il

aim

g de

ol

HEES Qe

e
0t '

1Y

FIGURE.6. SEQUENCE DIAGRAM OF BANK TRANSACTION

1189

Debashree Patnaik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3), 2011, 1187-1190

IV.TEST CASE GENERATION:

The following are the test cases generated from the real time
banking system. The real time banking system works as
follows:

1. First theBank needs to check if Mr.X is a valid customer,
for this the process P2 is initiated using the resource R2 to
check details for Mr.X. Validation successfully
completed.

2. Then P2 triggers P1 to refer the resource R1 to check the
available balance in account#2. A balance is available for
transfer.

3. Now the process P2 triggers P3 (using resource R3) and
P4 (using resource R4) to find out if any Credit cards,
debit cards or loans are attached to the account#2. A
Credit card, a debit card and a personal loan are found
attached to the account#2.

4. Process P3 checks for any payment due on the credit card.
Results show a due amount of Rs.5000/-.

5. Now P3 triggers process P1 for deducting the due amount
from account#2. Amount is available and Rs5000/- is
deducted and the same is updated in resource R1.

6. Process P4 checks for any instalments pending of the
attached personal loan. Results show one instalment of
Rs.10000/- is pending on the loan.

7. Now P4 triggers process P1 for deducting the last due
instalment from account#2. Amount is available and
Rs.10000/- is deducted and the same is updated in
resource R1.

8. Processes P3 & P4 returns back confirmation for closure
of the account. P1 process is initiated to transfer the
remaining balance from account#2 to account#1.

9. P1triggers P2 to check the validity of the account and the
account holder information. Account#1 is a valid and
open account and joint account holders are Mr.X and
Mrs.X.

10. Once the resource R1 confirms that the entire amount
from account#2 has been transferred to account#l, P1
starts the transfer of balance from account#2 to account#1
and finally closes the account#2 and updates the same in
R1 and R2.

11. At the exact same momentMr.Xtries to perform an ATM
transaction using the debit card attached to account#1l
initiating process P5.

12. Now PS5 triggers P2 (using the resource R2)& P3 (using
resource R3) to authenticate the customer& card details
respectively. Both P2 & P3 successfully validate the
authentication.

13. .Now P2 & P3 together trigger process P1 for withdrawal
of money. This needs the use of the resource R1.

14. But simultaneously as a part of the account#2 closer
procedure its remaining amount is getting transferred to
account#1 and is updating the resource R1, resulting in
the ATM transaction initiated by P5 to wait for resource
R1 and may result in timed-out.

Deadlock Situations:

Now we have two situations, one in which the deadlock is

avoided by reaching a Safe state and another in which the

transaction failed because of deadlock.

1.The 1st deadlock situation could have come at step 3, when
the P2 triggered P3 and P4, and later both P3 and P4 triggered
P1 simultaneously to deduct the due amounts. If the available
balance in the resource R1 was not enough then either one of
the P3 or P4 transactions could have failed. But as the balance
was available, a SAFESTATE was reached to avoid any
deadlock.

2.The 2nd deadlock situation arrived at step 11, when Mr.
tried to perform an ATM transaction using the debit card of
account#l. This needs resource R1 for withdrawal. But
simultaneously as a part of the account#2 closer process the
entire amount from account#2 is getting transferred to
account#1 and is updating the resource R1. As both debit and
credit information cannot be updated simultaneously (as this
will cause out-of-balance in the bank records), the ATM
process P5 has to wait for R1 and may get timed out.

V. CONCLUSION AND FUTURE WORK

Problems that arise from concurrency and deadlock are
discussed in context to distributed environment. The paper
emphasizes on testing the behavioral aspects of the distributed
objects using communication to stimulate the object’s
behavior. A method of deadlock analysis is presented through
link list and UML Sequence Diagrams. The Sequence diagram
is of a bank system. From the real life example of the bank
system we have generated the test cases. The generated test
cases can be optimized with the help of Genetic algorithm.
The authors have plan to to optimise the test cases with
Genetic algorithm The results of the applied genetic algorithm
can be viewed by implementation in Matlab.

REFERENCES

[1] A. Hessel, K.G. Larsen, M.Mikucionis, B.Nielsen, P. Pettersson, and A.
Skou,”Testing real-time systems using UPPAAL.”, In Proceedings of Formal
Methods and Testing, volume 4949 of LNCS,pages 77-117. Springer, 2008.
[2] A. Bader, A. S. M. Sajeev, S. Ramakrishna,”Testing concurrency and
communication in distributed object”.

[3] H. R. Asaadi, R. Khosravi, M. Mousavi3, N. Noroozi2,”” Towards Model-
Based Testing of Electronic Funds Transfer Systems”.

[4] R. M. Hierons, Kil. Bogdanov, J.P. Bowen, R.Cleaveland, J.Derrick,
J.Dick, M.Gheorghe, M. Harman, K. Kapoor, p. Krause, G.L"uttgen, A. J. H.
Simons, S. A. Vilkomir, M.R. Woodward, and H. Zedan,- ”” Using formal
specifications to support testing. ACM Computing Surveys, 41(2), 2009”.

[5] P. W. M. Koopman and R. Plasmeijer,-*“ Testing reactive systems with
GASTIn Post-Proceedings of TFP”. 2003, pages 111-129, Intellect, 2004.

[6] M.Mikucionis, B.Nielsen, and K. G. Larsen.,“Real-time system testing on-
the-fly.”” In Proceedings of NWPT’2003, pages 36—38, 2003.

[7] D. Harrell,” Executable object modeling with state charts”. IEEE
Computer, pages 31-42, July 1997.

1190

